
The Chemical Space Project
Published as part of the Accounts of Chemical Research special issue “Synthesis, Design, and Molecular Function”.

Jean-Louis Reymond*

Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland

CONSPECTUS: One of the simplest questions that can be
asked about molecular diversity is how many organic
molecules are possible in total? To answer this question, my
research group has computationally enumerated all possible
organic molecules up to a certain size to gain an unbiased
insight into the entire chemical space. Our latest database,
GDB-17, contains 166.4 billion molecules of up to 17 atoms of
C, N, O, S, and halogens, by far the largest small molecule
database reported to date. Molecules allowed by valency rules
but unstable or nonsynthesizable due to strained topologies or
reactive functional groups were not considered, which reduced
the enumeration by at least 10 orders of magnitude and was
essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known
molecules.
Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening
and visualization of very large databases in the form of a “periodic system of molecules” comprising six different fingerprint
spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-
coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery
were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and
transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space,
that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the
MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity.
Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with
innovative scaffolds and pharmacophores.

■ INTRODUCTION

Organic molecules are defined by the number, type, topological
connectivity, and stereochemistry of atoms described by their
structural formula. As of today over one hundred million such
organic molecules have been prepared, mostly in the context of
medicinal chemistry.1,2 Cheminformatics provides various
computational tools to handle the massive amount of
information created by these millions of molecules, in particular
to enable database classification and bioactivity prediction.3−7

One of the simplest questions that can be asked about
molecular diversity is how many organic molecules are possible
in total? The so-called “drug-like” chemical space has been
estimated at 1060 for all molecules obeying Lipinski’s rule-of-
five for oral bioavailability,8,9 and at 1020−1024 for all molecules
up to 30 atoms,10 in any case a number far too large for
practical application.11 Nevertheless my research group has
undertaken the computational enumeration of all possible
organic molecules up to a certain size. Our goal was not only to
count molecules but also to write them down as SMILES,4 to
understand their diversity, and to test their possible relevance
for drug discovery. This “chemical space project” led to the
chemical universe databases (GDBs, generated databases)

enumerating molecules following criteria for size, chemical
stability, and synthetic feasibility. This Account follows previous
reviews12−15 and provides a perspective on our work on
database assembly, visualization, and drug discovery.

■ ENUMERATION

Organic molecules can be derived from mathematical graphs by
substituting atoms for graph nodes and chemical bonds for
graph edges. In 1875 Cayley, the inventor of graph theory,
reported the first application of this principle by estimating the
number of possible acyclic branched hydrocarbons as a function
of size,16−18 an approach later followed for other top-
ologies.19,20 Beyond counting, structure enumeration algo-
rithms such as MOLGEN21,22 have been produced to enable
computer-assisted structure elucidation (CASE)23−26 by
enumerating molecules fitting predefined criteria of elemental
composition, mass, and the presence or absence of functional
groups. Other types of structure generators such as SPROUT27

are genetic algorithms that evolve organic molecules for
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maximum docking to a target protein or highest similarity to a
reference molecule.28 In these algorithms, molecules are often
assembled from known building blocks using known coupling
reactions, an approach also used to enumerate virtual
combinatorial libraries,29−32 in particular the Pfizer Global
Virtual Library, which corresponds to 10 trillion molecules,
although the compounds are only enumerated in response to
specific searches.33

In contrast to the above tailored approaches, we set out to
enumerate all possible molecules to gain an unbiased insight
into the entire chemical space, taking only simple chemical
stability and synthetic feasibility criteria into account. Starting

with mathematical graphs produced by the program GENG,34

graphs suitable to build saturated hydrocarbons were selected
taking ring strain and topology into account, for example,
excluding hydrocarbons with planar or pyramidal quaternary
centers. These graphs were then converted to skeletons by
introducing unsaturations following rules for valency, aroma-
ticity, and ring strain, for example, excluding bridgehead double
bonds and allenes. Finally molecules were obtained by mutating
carbon atoms to N, O, S, and halogens taking functional group
stability into account, for example, excluding water-reactive
groups such as acyl chlorides, anhydrides, hemiacetals, enols,
and enamines, and all heteroatom−heteroatom bonds except

Figure 1. Chemical universe database, GDB-17. (A) Enumeration principle. (B) Percentage of known molecules up to 17 atoms in the public
databases PubChem, ChEMBL, and DrugBank present or absent from GDB-17. (C) Occupancy of the shape triangle by molecules up to 17 atoms in
GDB, PubChem, ChEMBL, and DrugBank. (D) Drugs (blue) and yet unknown isomers with similar pharmacophores. (E) Yet unknown polycyclic
hydrocarbons from GDB-17.
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within aromatic rings, oximes, and hydrazones. Following our
initial databases GDB-1135,36 and GDB-13,37 we recently
enumerated 166.4 billion molecules of up to 17 atoms of C,
N, O, S, and halogens collected in GDB-17, by far the largest
database of explicitly enumerated small molecules reported to
date (Figure 1A).38,39 Related databases of enumerated
aromatic heterocycles have been reported by others.40,41

Removing molecules allowed by valency rules but unstable or
nonsynthesizable due to strained topologies or reactive
functional groups as discussed above reduced the enumeration
by at least 10 orders of magnitude and was therefore essential
to arrive at a manageable database size. Despite these
restrictions, GDB-17 is highly relevant with respect to known
molecules. It contains approximately 60% of PubChem,
ChEMBL, and Drugbank molecules up to 17 atoms, the
remaining 40% featuring mostly molecules with nonenum-
erated elements (P, B, Si) and functional groups (Figure 1B).
The unfiltered database of all valency-allowed C, N, and O
compounds up to nine atoms is available for download at www.
gdb.unibe.ch under the name DMU9 (“dark-matter universe”).
GDB molecules are stored as SMILES representing 2D

structures, which can be expanded to stereoisomers using the
3D-generator CORINA.42 They are mostly stereochemically
rich molecules of intermediate polarity with a three-dimen-
sional molecular shape,43 a property that is rather rare in
historical drugs but correlates with clinical success of drug
candidates (Figure 1C).44 Most strikingly, enumeration results
in a large diversity of structural types that are otherwise rather
difficult to access, as exemplified by millions of isomers of
marketed drugs, many of which have a very close
pharmacophore and shape yet have never been reported, and
by many yet unknown ring systems (compounds 1−12, Figure
1D,E).
Enumerating organic molecules beyond GDB-17 represents

an ongoing challenge and probably cannot be done
exhaustively. One approach for sampling this larger chemical
space consists in mutating known molecules from first
principles to generate new structures.45−47 In our “chemical
space travel” (CST) algorithm,48 iterative cycles of structural
mutations on a starting molecule A coupled to selection by
similarity to a target molecule B produces trajectory libraries of
hundreds of thousands of intermediates representing the

chemical space between start and target, an approach suitable
for connecting between various molecules up to 50 atoms in a
few tens of successive mutations (Figure 2A). CST was used to
identify a strongly docking hybrid molecule 13 between AMPA
and CNQX as a possible partial agonist of the AMPA receptor
(Figure 2B). This approach was recently exploited by others to
generate random molecules as a way to explore chemical
space.49

■ A PERIODIC SYSTEM OF MOLECULES

The GDB databases complement other large databases of
organic molecules of interest in drug discovery, flavors, and
fragrances chemistry, which together populate the known and
unknown chemical space of organic molecules (Table 1). A
classification system would be desirable to efficiently search for
analogs and to visualize the diversity of such large databases. To
address this challenge, we followed the concept of property
spaces by which molecules are assigned numerical descriptor
values, collected in a so-called fingerprint,5 and placed at the
corresponding coordinates of a multidimensional space where
each dimension represents one of the descriptors.50 In such
property spaces, spatial proximity between molecules measures
similarity.51 Furthermore, principal component analysis (PCA)
allows one to represent the property space by projection into
the principal component plane (PC1, PC2), the mathematical
equivalent of taking a picture from the most favorable angle
(Figure 3A).52−58

Inspired by the periodic system of the elements, organized
according to the atomic and main quantum numbers to form a
table such that nearby elements have related properties, we
devised the MQN system in the form of a multidimensional
grid. Molecules were assigned to grid positions following the
values of 42 molecular quantum numbers (MQN) counting
features important for chemical structure and biological
activity.73,74 This MQN-system was enabled by a web-browser
capable of identifying nearest neighbors of any molecule within
seconds.15,72 The same principle was applied with another five
fingerprints providing different insights into molecular
structure, namely, the SMILES fingerprint (SMIfp) counting
34 characters appearing in the SMILES of a molecule,75 the
1024-bit binary Daylight type substructure fingerprint (Sfp)76

and extended connectivity fingerprint (ECfp4)77 counting the

Figure 2. Chemical space travel. (A) Concept of chemical space travel. (B) Application to AMPA receptor ligands.
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presence of specific substructures, the atom pair fingerprint
(APfp) encoding molecular shape, and its related category
extended atom pair fingerprint (Xfp) encoding pharmaco-
phores.78 Validation with sets of known bioactive molecules
such as the directory of useful decoys (DUD)79 and shape
analogs showed that nearest neighbor searches by city-block
distance in each of these six fingerprint spaces efficiently
retrieved bioactive analogs. For the case of MQN, SMIfp, APfp,
and Xfp fingerprints similarity retrieved “scaffold-hopping”
analogs, which are molecules with similar shape, pharmaco-
phores, and bioactivity but very different substructures as
measured by Sfp indicating nonobvious and valuable structure−
activity relationships.80

For MQN and SMIfp chemical spaces, PCA projects over
70% of data variability into the (PC1, PC2)-plane, making this
plane suitable as map of chemical diversity. Color-coding
according to molecular properties, such as molecule size,
rigidity, and polarity, allows visualizing chemical diversity in
various databases such as PubChem,81 DrugBank,82 and GDB-
13.72 Each pixel in these maps can be inspected by zooming and
visualizing the molecules at that position with help of the
MQN- and SMIfp-mapplets (Figure 3B). These java
applications are freely available at www.gdb.unibe.ch to visualize
DrugBank, ChEMBL, ZINC, PubChem, GDB-11, GDB-13,
and GDB-17.75,83 The mapplets also contain molecule
localization functions and a link to the web-browser for
proximity searching in the parent MQN- and SMIfp-space. A
related Fragrance-mapplet application allows inspecting the
Flavornet and Superscent databases and the related fragrance-
like subsets of ZINC and GDB-13.68 Taken together, the
proximity search browsers and mapplets constitute a “periodic
system of molecules” for exploring chemical space that to the
best of our knowledge is unprecedented.

■ DRUG DISCOVERY

GDB contains almost exclusively (>99.9%) new molecules and
therefore represents a vast reservoir of opportunities for drug
discovery. Remarkably, the majority of GDB molecules fulfill
drug-likeness,8 lead-likeness,84 and fragment likeness85 criteria,
mostly because graph diversity is highest with polycyclic rigid
structures and because the introduction of heteroatoms gives
the largest number of possibilities for intermediate ratios of
heteroatom to carbon, resulting in many relatively rigid and
polar molecules.
Our first projects exploited GDB-11 using a combination of

substructure-guided compound selection and high-throughput
docking, followed by synthesis and testing. We focused on
neurotransmitter receptors and transporters because these
targets can be modulated by very small molecules such as
those found in GDB. Dipeptide 14 and diketopiperazine 15
were identified from a glycine analog search in GDB-11 as
inhibitors of the glycine site of the NMDA receptor,86,87 and
norbornane aspartic acid rac-16 was identified from an
aspartate analog search as selective inhibitor of the glutamate
transporter GLT-1,88 in both cases via synthesis and evaluation
of 20−30 test compounds (Figure 4). A similar approach was
used to select possible modulators of the nicotinic acetylcholine
receptor (nAChR) combining the selective enumeration of
analogs of PNU-282,98789 from quinuclidine-like diamines in
GDB-11 with docking to the acetylcholine binding protein.
Synthesis of over 80 computationally selected analogs and
testing led to the discovery of the competitive α7 nAChR
inhibitor 17.90,91

Due to the limited throughput of docking, which only
allowed evaluation of 5% of the compounds selected from
GDB-11 in the case of the nAChR project, a more direct virtual
screening approach was envisioned exploiting the concept of
chemical space classification discussed above. Analogs of the 3-
aminoquinuclidine nucleus of PNU-282,987 were extracted
from GDB-13 by constraining MQN values. Remarkably, only
344 quinuclidine-like diamines remained when imposing up to
nine carbon atoms, exactly two nitrogen atoms, two cycles size
5−7, no unsaturations, a maximum of two acyclic carbon atoms
only as amine substituents, and at least two bonds shared by
two rings to enforce a globular shaped bicyclic diamine. Three
of these 344 diamines were selected by shape similarity82,96 to
PNU-282,987, novelty, and synthetic feasibility. The synthesis
was demanding, but the approach was quite successful. Two of
the selected compounds rac-18 and rac-19 together with 20
from the previous approach turned out to be positive allosteric
modulators (PAM) of the α3β2 nAChR, an unprecedented
activity type absent from PNU-282,987 but desirable to
strengthen muscular contraction in elderly people suffering
from sacropenia by reinforcing neurotransmission at the
neuromuscular junction.
The suitability of the MQN selection for identifying bioactive

analogs of PNU-282,987 from GDB was confirmed in a parallel
study with nicotine.92 Starting from the fact that 322
compounds from GDB-13 also annotated as nicotinic
acetylcholine receptor activity in ChEMBL were much closer
to nicotine in MQN-space (CBDMQN = 22.8 ± 12.5) than
average GDB-13 molecules (CBDMQN = 38.8 ± 11.1), a nearest
neighbor selection was performed in the simplicity-selected
GDB-13 subset (Table 1), leading to 31 504 nicotine analogs.
Sixty of these were purchased from a commercial source and
tested against the α7 nAChR, revealing a single agonist as the

Table 1. Databases of the Known and Unknown Chemical
Space

database description sizea ref

DrugBank approved and investigational
drugs

7 584 59

SuperScent scents from literature 2 300 60
Flavornet volatile compounds from

literature
738 61

SuperSweet carbohydrates and artificial
sweeteners

642 62

BitterDB bitter cpds from literature and
Merck index

606 63

PubChem NIH repository of molecules 63 095 535 64,65
ZINC commercial small molecules 22 724 825 66,67
ZINC.FL fragrance-like subset of ZINC 69 724 68
BindingDB small molecules annotated with

bioactivity data
453 657 69,70

ChEMBL small molecules annotated with
bioactivity data

1 411 786 71

GDB-11 molecules of up to 11 atoms of
C, N, O, and F

26 434 571 36

GDB-13 molecules of up to 13 atoms of
C, N, O, S, and Cl

977 468 314 37

GDB-
13.subset

simplicity-selected GDB-13
molecules

43 729 989 72

GDB-13.FL fragrance-like subset of GDB-
13

59 482 898 68

GDB-17 molecules of up to 17 atoms of
C, N, O, S, and halogens

166 443 860 262 38

aFor the latest version of each database as available in November 2014.
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known neonicotine rac-21, and several previously unknown
inhibitors such as the benzylic amine 22 and the aliphatic

amidine 23, both of which are structurally quite distinct from

nicotine (Figure 5).

Figure 3. A periodic system of molecules. (A) Multidimensional chemical space and principal component analysis for visualization. (B) Image of the
MQN-mapplet showing GDB-13 color-coded by ring count. Part of the content of the flagged pixel is shown at right.

Figure 4. Bioactive compounds selected from GDB. The α3β2 nAChR
PAMs enhance the signal induced by 50 μM acetylcholine by 1.5−3-
fold at 10 μM. Figure 5. Nearest neighbor searches in chemical space. Bioactive

molecules identified by MQN nearest neighbor searches with
CBDMQN ≤ 11 from nicotine in GDB-13 and CBDMQN ≤ 12 in
ChEMBL from PNU-282,987. The α3β2 nAChR PAM (R)-25
enhances the signal induced by 50 μM acetylcholine by 10-fold at 1
μM.
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MQN-based nearest neighbor selection as a virtual screening
tool recently provided us with an additional striking success in
our search for α3β2 nAChR PAM ligands.93 Led by the
evidence that both agonist and PAM activities on the highly
similar α7 and α3β2 nAChRs was best achieved with globular
quinuclidine-type tertiary amines, an MQN search was
performed in ChEMBL starting from the known α7 nAChR
agonist PNU-282,987. Applying the distance constraint
CBDMQN ≤ 12 previously found to ensure high pharmacophore
and shape similarity gave only 115 analogs, 49 of which were 3-
substituted quinuclidines. A visual inspection of these
derivatives, which we named “chemical space walk” to highlight
the simplicity of the exercise, revealed 2-chlorobenzyl-3-
aminoquinuclidine 24 as an interesting yet unexplored
compound family for nAChR. Synthesis of this and further
derivatives in optically pure form and evaluation by electro-
physiology led to 2-iodo derivative (R)-25 as a particularly
potent α3β2 nAChR PAM, which is currently undergoing
further pharmacological evaluation.
The above examples illustrate that nearest neighbor searches

in MQN and related fingerprint spaces allow the successful
exploitation of very large compound databases such as the
GDB, or more directly the commercially available compounds
in ZINC or the documented bioactive compounds in ChEMBL.
We recently established a public web-based multifingerprint
browser for the ZINC database, by which nearest neighbors of
any query molecule can be retrieved from ZINC in MQN,
SMIfp, Sfp, and ECfp4 spaces.94 This browser is publicly
available at www.gdb.unibe.ch and can also cluster nearest
neighbors to compose a focused list for purchase and evaluation
as valuable help for drug discovery projects.

■ CONCLUSION AND OUTLOOK
The exploration of chemical space started in the 19th century as
a counting game to evaluate its size. The advent of
cheminformatics and powerful computers allowed us to
perform an actual enumeration of molecules to produce the
chemical universe databases, GDBs. The project required
chemical expertise to choose a set of criteria to select molecules
with likely chemical stability and synthetic feasibility. The size
of 166.4 billion structures for the currently largest database
GDB-17 was mostly determined by the available computational
power, data transfer rates, and memory size. Beyond
enumeration, understanding and exploiting GDB led us to
develop methods for virtual screening and visualization of very
large databases in the form of a “periodic system of molecules”
comprising six different fingerprint spaces, with web-browsers
for nearest neighbor searches, and the MQN- and SMIfp-
Mapplet application for exploring color-coded PC-maps of
GDB and other large databases. Further insights into GDB
molecules from the point of view of physical chemistry were
recently reported by von Lilienfeld et al. in form of calculated
electronic properties, which were predicted by machine
learning methods.95−97

Proof-of-concept applications of GDB for drug discovery
were realized by combining virtual screening with chemical
synthesis and activity testing for neurotransmitter receptor and
transporter ligands. One surprising lesson from using GDB for
drug analog searches is the incredible depth of chemical space,
that is, the fact that millions of very close analogs of any
molecule are possible including scaffold-hopping molecular
shape and pharmacophore analogs. These analogs can be
readily identified by nearest-neighbor searches in the MQN-

space of the various GDBs and may display differentiated
pharmacology as exemplified with the discovery of α3β2
nAChR PAM compounds discussed above.
The chemical space project has opened an unprecedented

door on chemical diversity. Ongoing and yet unmet challenges
concern enumerating molecules beyond 17 atoms and
synthesizing GDB molecules with innovative scaffolds and
pharmacophores. In the latter case, a quantum leap in the
accuracy of virtual screening predictions would be most
welcome since it would greatly increase the attractiveness of
challenging GDB molecules for which creative synthetic routes
must be designed.
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